PDC Courses

PDC1: Monday, June 20 - 1:00pm - 2:45pm

3D Package Assembly Processes and Technology 
Tom Dory, Fujifilm Electronic Materials USA

This PDC provides details on current and future assembly 3D packaging processes and technologies. The 3D IC and wafer-level packaging area is forecasted to grow to over $2.5 billion by 2016 driven by mobile devices including phone and tablet computers. Advanced packaging requirements require the evolution of back end manufacturing to become more process control driven. The 3D stacked die TSV packaging has advantages, but only in some market segments. In the cell phone market, stacking chips helps to minimize some of the interconnect issues between the logic and the memory chips. Wire bonding remains a key assembly method for 3D memory packages. This workshop will cover 3D and 2.5D (interposer) designs, 3D assembly flow, known good die, KGD, concerns, 3D package testing issues, supply line logistics, thermal management, logic bump out designs, wafer thinning and handling (thermal & laser debonding and residue removal) and interposers with microfluidics cooling built-in. Multichip package options including SiP, SoP and interposer packages will be discussed. The objective of this workshop is to provide the students with an overview of the technologies, materials, and processes involved in the latest 3D and 2.5D assembly processes.

PDC2: Monday, June 20 - 1:00pm - 2:45pm

System-in-Package (SiP) - System Solutions Through Miniaturization

Mark Gerber, ASE US, Inc.

This PDC course will introduce the package platform SiP (System-in-Package) and how some companies are diversifying from SOC (System-on-a-Chip) to leverage heterogeneous silicon integration and package miniaturization to enable system level solutions. A short market perspective will be reviewed as well as how industry segments are leveraging SiP and how the OEM market is evolving and creating system level ecosystems to enabling content revenue- a key area of IOT. SiP general process flow details will be covered as well as key process considerations for yield improvements. In addition, a brief overview of some of the tools that may be leveraged to help miniaturize module solutions and improve performance. This class will also introduce several variations of the SIP platform using Fan-Out Wafer Level packaging and new embedded substrate technologies are also emerging as powerful future platforms to enable lower power and higher performance devices using solderless interconnects.   

PDC3: Monday, June 20 - 3:15pm - 5:00pm

Chiplet Design and Heterogenous Integration Packaging
John H. Lau, Unimicron Technology Corporation

Chiplet is a chip design method and heterogeneous integration (HI) is a chip packaging method. HI uses packaging technology to integrate dissimilar chips, photonic devices, and/or components (either side-by-side, stacked, or both) with different sizes and functions, and from different fabless design houses, foundries, wafer sizes, feature sizes and companies into a system or subsystem on a common package substrate. These chips can be any kind of devices and don‘t have to be chiplets. On the other hand, for chiplets, they have to use the heterogeneous integration to package them. For the next few years, we will see more implementations of a higher level of chiplet designs and HI packaging, whether it is for time-to-market, performance, form factor, power consumption or cost. In this lecture, the introduction, recent advances, and trends in chiplet design and HI packaging will be presented.